If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=1089
We move all terms to the left:
9x^2-(1089)=0
a = 9; b = 0; c = -1089;
Δ = b2-4ac
Δ = 02-4·9·(-1089)
Δ = 39204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{39204}=198$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-198}{2*9}=\frac{-198}{18} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+198}{2*9}=\frac{198}{18} =11 $
| x/5+16=27 | | 1/2x+3/4=-1/2x+15/4 | | 4(x-8)-6=8 | | x–9.5=-10.5 | | 10=-1-v | | -7(x-6)=-42 | | 5(k−85)=50 | | 1/7m=5m | | y/4+39=46 | | 5t^2-4t+12=0 | | y4+ 39=46 | | 7−6x=−5 | | 5x+7-3x=6x-13 | | 3x/4+5/8=4x/1 | | 3b^2+26b-9=0 | | -4r-4(6r-7)=-168 | | 33x+1067x-20=22(50x+78) | | 4(-3)=4x-12 | | p-53=63 | | -3=6x-1 | | -31=-7u+5(u+7) | | 0.6x-2=14-4/3x | | 0.6x-2=14-11/3x | | 2/5x+14=16 | | K=3r-42 | | 4(3x+4)=14x+14-2x+2 | | 6x-4+2x=4(5+2x) | | -4=-3/4x+1 | | 12=4a+2a= | | b+51=78 | | 8-8(b-7)=112 | | (6x-63)+(4x-3)=180 |